Modular Classes of Loday Algebroids

نویسندگان

  • Mathieu Stiénon
  • Ping Xu
چکیده

We introduce the concept of Loday algebroids, a generalization of Courant algebroids. We define the naive cohomology and modular class of a Loday algebroid, and we show that the modular class of the double of a Lie bialgebroid vanishes. For Courant algebroids, we describe the relation between the naive and standard cohomologies and we conjecture that they are isomorphic when the Courant algebroid is transitive. 1 Naive Cohomology Given a Courant algebroid (E, ρ, J·, ·K, 〈·, ·〉), let Γ(∧ ker ρ) denote the space of smooth sections of the (possibly singular) vector bundle ∧ ker ρ (i.e. smooth sections α of ∧E such that α|m ∈ ∧ k ker ρ for each m ∈ M). The extension of the pseudo-metric 〈·, ·〉 to ∧E naturally induces an isomorphism Ξ : ∧E → ∧E. Since, by definition, 〈Df, e〉 = 1 2 ρ(e)f , the sections of ∧ ker ρ are characterized as the elements ε ∈ Γ(∧E) such that ı̆Dfε = 0, ∀f ∈ C(M). Here ı̆Df = Ξ −1 ◦iDf ◦Ξ, where iDf : Γ(∧ E) → Γ(∧E) is the usual contraction of exterior forms with the section Df ∈ Γ(E). Define an operator d̆ : Γ(∧ ker ρ) → Γ(∧E) by (d̆α)(e0, · · · , ek) = k ∑ i=0 (−1)ρ(ei)α(e0, · · · , êi, · · · , ek)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poisson manifolds, Lie algebroids, modular classes: a survey

After a brief summary of the main properties of Poisson manifolds and Lie algebroids in general, we survey recent work on the modular classes of Poisson and twisted Poisson manifolds, of Lie algebroids with a Poisson or twisted Poisson structure, and of Poisson–Nijenhuis manifolds. A review of the spinor approach to the modular class concludes the paper.

متن کامل

Characteristic Classes of Lie Algebroid Morphisms

We extend R. Fernandes’ construction of the secondary characteristic classes of a Lie algebroid to the case of a base-preserving morphism between two Lie algebroids. Like in the case of a Lie algebroid, the simplest characteristic class of our construction coincides with the modular class of the morphism. In [4] R. Fernandes has constructed a sequence of secondary characteristic classes of a Li...

متن کامل

m at h . D G ] 1 3 A ug 2 00 5 1 DYNAMICAL SYSTEMS ON LEIBNIZ ALGEBROIDS

In this paper we study the differential systems on Leibniz algebroids. We introduce a class of almost metriplectic manifolds as a special case of Leibniz manifolds. Also, the notion of almost metriplectic algebroid is introduced. These types of algebroids are used in the presentation of associated differential systems. We give some interesting examples of differential systems on algebroids and ...

متن کامل

Homology and modular classes of Lie algebroids

For a Lie algebroid, divergences chosen in a classical way lead to a uniquely defined homology theory. They define also, in a natural way, modular classes of certain Lie algebroid morphisms. This approach, applied for the anchor map, recovers the concept of modular class due to S. Evens, J.-H. Lu, and A. Weinstein.

متن کامل

Modular Classes of Q-manifolds: a Review and Some Applications

A Q-manifold is a supermanifold equipped with an odd vector field that squares to zero. The notion of the modular class of a Q-manifold – which is viewed as the obstruction to the existence of a Q-invariant Berezin volume – is not well know. We review the basic ideas and then apply this technology to various examples, including L∞-algebroids and higher Poisson manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008